Introduction to the Galois Theory of Linear Differential Equations

نویسنده

  • Michael F. Singer
چکیده

This paper is an expanded version of the 10 lectures I gave as the 2006 London Mathematical Society Invited Lecture Series at the Heriot-Watt University, 31 July 4 August 2006†. My goal was to give the audience an introduction to the algebraic, analytic and algorithmic aspects of the Galois theory of linear differential equations by focusing on some of the main ideas and philosophies and on examples. There are several texts ([Beu92, Kap76, Kol76, Mag94, dPS03] to name a few) that give detailed expositions and I hope that the taste offered here will encourage the reader to dine more fully with one of these. The rest of the paper is organized as follows. In Section 1.2, What is a Linear Differential Equation?, I discuss three ways to think about linear differential equations: scalar equations, linear systems and differential modules. Just as it is useful to think of linear maps in terms of linear equations, matrices and associated modules, it will be helpful in future sections to go back and forth between the different ways of presenting linear differential equations. In Section 1.3, Basic Galois Theory and Applications, I will give the basic definitions and describe the Galois correspondence. In addition I will describe the notion of monodromy and its relation to the Galois

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Introduction to the Galois Theory of Linear Differential Equations

This paper is an expanded version of the 10 lectures I gave as the 2006 London Mathematical Society Invited Lecture Series at the Heriot-Watt University, 31 July 4 August 2006†. My goal was to give the audience an introduction to the algebraic, analytic and algorithmic aspects of the Galois theory of linear differential equations by focusing on some of the main ideas and philosophies and on exa...

متن کامل

Introduction to the Galois Theory of Linear Ordinary Differential Equations

We define the differential Galois group of a linear homogeneous ordinary differential equation and illustrate the type of information about solutions packaged within. The initial format is classical; at the end we indicate how the results can be conceptualized geometrically.

متن کامل

Application of the linear Differential Equations on the Plane and Elements of Nonlinear Systems, In Economics

In recent years, it has become increasingly important to incorporate explicit dynamics in economic analysis. These two tools that mathematicians have developed, differential equations and optimal control theory, are probably the most basic for economists to analyze dynamic problems. In this paper I will consider the linear differential equations on the plane (phase diagram) and elements of nonl...

متن کامل

Lectures on differential

Differential Galois theory has known an outburst of activity in the last decade. To pinpoint what triggered this renewal is probably a matter of personal taste; all the same, let me start the present review by a tentative list, restricted on purpose to “non-obviously differential” occurrences of the theory (and also, as in the book under review, to the Galois theory of linear differential equat...

متن کامل

Differential Algebra

There are two main topics we will discuss in these lectures: (I) The core differential algebra: (a) Introduction: We will begin with an introduction to differential algebraic structures, important terms and notation, and a general background needed for this lecture. (b) Differential elimination: Given a system of polynomial partial differential equations (PDE’s for short), we will determine if ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0712.4124  شماره 

صفحات  -

تاریخ انتشار 2007